References

[1] P Areias, T Rabczuk, FJM Queirós de Melo, J César de Sá. Coulomb frictional contact by explicit projection in the cone for finite displacement quasi-static problems. Computational Mechanics, 55(1):57—72, 2015.

[2] P Areias, J Reinoso, P Camanho, T Rabczuk. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Computational Mechanics, 56(2):291—315, 2015.

[3] P. Areias, T Belytschko. A comment on the article "A finite element method for simulation of strong and weak discontinuities in solid mechanics" By A. Hansbo and P. Hansbo [Comput. methods Appl. Mech. Engrg. 193 (2004) 3523-3540]. Computer Methods in Applied Mechanics and Engineering, 195(9-12):1275-1276, 2006.

[4] P. Areias, T Belytschko. Analysis of three-dimensional crack initiation and propagation using the extended finite element method. International Journal For Numerical Methods in Engineering, 63(5):760-788, 2005.

[5] P. Areias, T Belytschko. Non-linear analysis of shells with arbitrary evolving cracks using XFEM. International Journal For Numerical Methods in Engineering, 62(3):384-415, 2005.

[6] P. Areias, T Belytschko. Two-scale shear band evolution by local partition of unity. International Journal For Numerical Methods in Engineering, 66(5):878-910, 2006.

[7] P. Areias, Ted Belytschko. Analysis of finite strain anisotropic elastoplastic fracture in thin plates and shells. Journal of Aerospace Engineering, 19(4):259-270, 2006.

[8] P. Areias, Ted Belytschko. Two-scale method for shear bands: Thermal effects and variable bandwidth. International Journal For Numerical Methods in Engineering, 72(6):658-696, 2007.

[9] P. Areias, J César de Sá, R. Cardoso. A simple assumed-strain quadrilateral shell element for finite strains and fracture. Eng Comput, 2014. In Press.

[10] P. Areias, J.M.A. César de Sá, C.A. Conceição António. Strong displacement discontinuities and lagrange multipliers: finite displacement formulation in the analysis of fracture problems. Latin American Journal of Solids and Structures, 2:77-88, 2005.

[11] P. Areias, D. Dias-da-Costa, J. Alfaiate, E. Julio. Arbitrary bi-dimensional finite strain cohesive crack propagation. Computational Mechanics, 45(1):61-75, 2009.

[12] P. Areias, D. Dias-da-Costa, E. B. Pires, J. Infante Barbosa. A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity. Computational Mechanics, 49(5):545-564, 2012.

[13] P. Areias, D. Dias-da-Costa, E. B. Pires, N. Van Goethem. Asymmetric quadrilateral shell elements for finite strains. Computational Mechanics, 52(1):81-97, 2013. URL ://WOS:000320000700006. Times Cited: 0 0.

[14] P. Areias, D. Dias-da-Costa, J.M. Sargado. Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Computational Mechanics, 52(6):1429-1443, 2013.

[15] P. Areias, J. Garcao, E. B. Pires, J. Infante Barbosa. Exact corotational shell for finite strains and fracture. Computational Mechanics, 48(4):385-406, 2011.

[16] P. Areias, R.M.N. Jorge, J.T. Barbosa, A.A. Fernandes, T. Mascarenhas, M. Oliveira, B. Patricio. Experimental and finite element analysis of human skin elasticity. 2003 Advances in Bioengineering:303-304, 2003.

[17] P. Areias, K. Matous. Stabilized four-node tetrahedron with nonlocal pressure for modeling hyperelastic materials. International Journal For Numerical Methods in Engineering, 76(8):1185-1201, 2008.

[18] P. Areias, Karel Matous. Finite element formulation for modeling nonlinear viscoelastic elastomers. Computer Methods in Applied Mechanics and Engineering, 197(51-52):4702-4717, 2008.

[19] P. Areias, A. Pinto da Costa, T. Rabczuk, F. J. M. Queiros de Melo, D. Dias-da-Costa, Mourad Bezzeghoud. An alternative formulation for quasi-static frictional and cohesive contact problems. Computational Mechanics, 53(4):807-824, 2014.

[20] P. Areias, T. Rabczuk, P.P. Camanho. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 52(4):931-947, 2013.

[21] P. Areias, T. Rabczuk, D. Dias-da-Costa, E. B. Pires. Implicit solutions with consistent additive and multiplicative components. Finite Elements in Analysis and Design, 57:15-31, 2012.

[22] P. Areias, T. Rabczuk, D. Dias-da-Costa, E.B. Pires. Asymmetric quadrilateral shell elements for finite strains. Computational Mechanics, 52(1):81-97, 2013.

[23] P. Areias, T. Rabczuk, D. Dias-da-Costa. Assumed-metric spherically interpolated quadrilateral shell element. Finite Elements in Analysis and Design, 66:53-67, 2013.

[24] P. Areias, T. Rabczuk, D. Dias-da-Costa. Asymmetric Shell Elements Based on a Corrected Updated-Lagrangian Approach. Cmes-Computer Modeling in Engineering & Sciences, 88(6):475-506, 2012. URL ://CCC:000314855200002. Times Cited: 0.

[25] P. Areias, T. Rabczuk, D. Dias-da-Costa. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 110:113-137, 2013.

[26] P. Areias, T. Rabczuk, J.César de Sá, R. Natal Jorge. A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares. Computational Mechanics, 55(4):673-696, 2015. URL http://dx.doi.org/10.1007/s00466-015-1130-9.

[27] P. Areias, T. Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 94(12):1099-1122, 2013. URL ://WOS:000319066200002. Times Cited: 0 0.

[28] P. Areias, T. Rabczuk. Smooth finite strain plasticity with non-local pressure support. International Journal For Numerical Methods in Engineering, 81(1):106-134, 2010.

[29] P. Areias, Timon Rabczuk. Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws. International Journal For Numerical Methods in Engineering, 74(3):475-505, 2008.

[30] P. Areias, Manuel C. Ritto-Correa, Joao A. C. Martins. Finite strain plasticity, the stress condition and a complete shell model. Computational Mechanics, 45(2-3):189-209, 2010.

[31] P. Areias, H. G. Silva, N. Van Goethem, M. Bezzeghoud. Damage-based fracture with electro-magnetic coupling. Computational Mechanics, 51(5):629-640, 2013. URL ://WOS:000317422600004. Times Cited: 0 0.

[32] P. Areias, J. H. Song, Ted Belytschko. Analysis of fracture in thin shells by overlapping paired elements. Computer Methods in Applied Mechanics and Engineering, 195(41-43):5343-5360, 2006.

[33] P. Areias, JH Song, T Belytschko. Finite-strain quadrilateral shell element based on discrete Kirchhoff-Love constraints. International Journal For Numerical Methods in Engineering, 64(9):1166-1206, 2005.

[34] P. Areias, N. Van Goethem, E. B. Pires. A damage model for ductile crack initiation and propagation. Computational Mechanics, 47(6):641-656, 2011.

[35] P. Areias, JMAC de Sa, CAC Antonio, JASAO Carneiro, VMP Teixeira. Strong displacement discontinuities and Lagrange multipliers in the analysis of finite displacement fracture problems. Computational Mechanics, 35(1):54-71, 2004.

[36] P. Areias, JMAC de Sa, CAC Antonio, AA Fernandes. Analysis of 3D problems using a new enhanced strain hexahedral element. International Journal For Numerical Methods in Engineering, 58(11):1637-1682, 2003.

[37] P. Areias, JMAC de Sa, CAC Antonio. A gradient model for finite strain elastoplasticity coupled with damage. Finite Elements in Analysis and Design, 39(13):1191-1235, 2003.

[38] P. Areias, JMAC de Sa, CAC Antonio. Algorithms for the analysis of 3D finite strain contact problems. International Journal For Numerical Methods in Engineering, 61(7):1107-1151, 2004.

[39] P. Areias, JMAC de Sa, S Ghosh, JM Castro, JK Lee. A second order approach for finite deformation implicit contact analysis, including friction, in deformable bodies. 2004.

[40] Pedro Areias, T Rabczuk, PP Camanho. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 72:50—63, 2014.

[41] D. Dias-da-Costa, J. Alfaiate, L. J. Sluys, P. Areias, E. Julio. An embedded formulation with conforming finite elements to capture strong discontinuities. International Journal For Numerical Methods in Engineering, 93(2):224-244, 2013.

[42] L Godinho, D Dias-da-Costa, J Valença, P Areias. An efficient technique for surface strain recovery from photogrammetric data using meshless interpolation. Strain, 50(2):132—146, 2014.

[43] L. Godinho, D. Dias-da-Costa, P. Areias, E. Julio, D. Soares. Numerical study towards the use of a SH wave ultrasonic-based strategy for crack detection in concrete structures. Engineering Structures, 49:782-791, 2013. URL ://WOS:000317528800061.

[44] L. Godinho, D. Dias-da-Costa, J. Valenca, P. Areias. An Efficient Technique for Surface Strain Recovery from Photogrammetric Data using Meshless Interpolation. Strain, 50(2):132-146, 2014.

[45] J. Amani, E. Oterkus, P.M. Areias, G. Zi, T. Nguyen-Thoi, T. Rabczuk. A non-ordinary state-based peridynamics formulation for thermoplastic fracture . International Journal of Impact Engineering : - , 2015. URL http://www.sciencedirect.com/science/article/pii/S0734743X15001359.

[46] R.F. Martins, P.M.A. Areias, A.P. Jesus, J.S. Domingues. Comportamento dinâmico do elemento p15n para flexão de placa. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingineria, 15(2):193-205, 1999.

[47] Pedro Miguel de Almeida Areias, Timon Rabczuk, Joaquim Infante Barbosa. The extended unsymmetric frontal solution for multiple-point constraints. Engineering Computations, 31(7):1582—1607, 2014.

[48] Mohammed A. Msekh, Juan Michael Sargado, Mostafa Jamshidian, Pedro Miguel Areias, Timon Rabczuk. Abaqus implementation of phase-field model for brittle fracture . Computational Materials Science , 96, Part B:472 - 484, 2015. URL http://www.sciencedirect.com/science/article/pii/S0927025614004133. Special Issue Polymeric Composites .

[49] M.A. Msekh, J.M. Sargado, M. Jamshidian, P. Areias, T. Rabczuk. Abaqus implementation of phase-field model for brittle fracture. Computational Materials Science, 2014. In press.

[50] N. Nguyen-Thanh, N. Valizadeh, M.N. Nguyen, H. Nguyen-Xuan, X. Zhuang, P. Areias, G. Zi, Y. Bazilevs, L. De Lorenzis, T. Rabczuk. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory . Computer Methods in Applied Mechanics and Engineering , 284:265 - 291, 2015. Isogeometric Analysis Special Issue .

[51] P. Areias, T. Rabczuk, J. César de Sá. Semi-implicit finite strain constitutive integration of porous plasticity models . Finite Elements in Analysis and Design , 104:41 - 55, 2015. URL http://www.sciencedirect.com/science/article/pii/S0168874X15000803.

[52] P. Areias, T. Rabczuk, J. Cśar de Sá. A finite strain quadrilateral based on least-squares assumed strains . Engineering Structures , 100:1 - 16, 2015. URL http://www.sciencedirect.com/science/article/pii/S0141029615003697.

[53] P. Areias, T. Rabczuk, J.M. César de Sá, J.E. Garã̧o. Finite strain quadrilateral shell using least-squares fit of relative Lagrangian in-plane strains . Finite Elements in Analysis and Design , 98:26 - 40, 2015.

[54] M. P. M. Pato, P. Areias. Active and passive behaviors of soft tissues: Pelvic floor muscles. International Journal For Numerical Methods in Biomedical Engineering, 26(6):667-680, 2010.

[55] M. P. M. Pato, N. J. G. Santos, P. Areias, E. B. Pires, M. de Carvalho, S. Pinto, D. S. Lopes. Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases. Computer Methods in Biomechanics and Biomedical Engineering, 14(6):505-513, 2011.

[56] T. Rabczuk, P. Areias, T. Belytschko. A meshfree thin shell method for non-linear dynamic fracture. International Journal For Numerical Methods in Engineering, 72(5):524-548, 2007.

[57] T. Rabczuk, P. Areias, T. Belytschko. A simplified mesh-free method for shear bands with cohesive surfaces. International Journal For Numerical Methods in Engineering, 69(5):993-1021, 2007.

[58] T. Rabczuk, P. Areias. A new approach for modelling slip lines in geological materials with cohesive models. International Journal For Numerical and Analytical Methods in Geomechanics, 30(11):1159-1172, 2006.

[59] Timon Rabczuk, P. Areias. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Cmes-Computer Modeling in Engineering & Sciences, 16(2):115-130, 2006.

[60] Jeong-Hoon Song, P. Areias, T. Belytschko. A method for dynamic crack and shear band propagation with phantom nodes. International Journal For Numerical Methods in Engineering, 67(6):868-893, 2006.

[61] N. Van Goethem, P. Areias. A damage-based temperature-dependent model for ductile fracture with finite strains and configurational forces. International Journal of Fracture, 178(1-2):215-232, 2012.

[62] J. M. A. Cesar de Sa, P. Areias, Cai Zheng. Damage modelling in metal forming problems using an implicit non-local gradient model. Computer Methods in Applied Mechanics and Engineering, 195(48-49):6646-6660, 2006.

[63] J.M.A.C. de Sa, P. Areias, R.M.N. Jorge. Quadrilateral elements for the solution of elasto-plastic finite strain problems. International Journal For Numerical Methods in Engineering, 51(8):883-917, 2001.

[64] JMAC de Sa, P. Areias, RMN Jorge, RAF Valente, KI Mori. Techniques for the analysis of metalworking processes using enhanced-strain elements. Simulation of Materials Processing: Theory, Methods and Applications:155-160, 2001.

[65] JMAC de Sa, P. Areias, FMA Pires, C Zheng, S Ghosh, JM Castro, JK Lee. Gradient damage models in metal forming problems. 2004.

[66] JMAC de Sa, RMN Jorge, RAF Valente, P. Areias. Development of shear locking-free shell elements using an enhanced assumed strain formulation. International Journal For Numerical Methods in Engineering, 53(7):1721-1750, 2002.